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1. Introduction

A certain class of correlation functions of N = 4 super Yang-Mills theory can be computed

exactly using a free-field approximation. A very interesting nontrivial example of such cases

is the two-point correlator of multi-trace local operators belonging to the 1/2-BPS sector. In

this case, the free-field approximation of the gauge theory can further be mapped to a one-

dimensional matrix model [1, 2]. Hence, such correlators can be conveniently classified by

using the language of one-dimensional non-relativistic free fermions. It is quite remarkable

that the similar fermion-liquid (‘droplet’) picture also arises in the holographically dual

description, namely, on the supergravity side [3] as the classification of a class of the so-

called bubbling geometries with the same amount of (super)symmetries as the 1/2-BPS

sector of the gauge theory. The correspondence of both sides in this particular sector can

be regarded as yet another evidence for the AdS/CFT correspondence.

It would be of some interest to see whether this correspondence of classification at the

level of spectrum could be further extended to agreements of physical observables. The

purpose of the present note is to provide such an example. According to the standard

prescription of the AdS/CFT correspondence, the gauge-theory correlators are interpreted

as the amplitudes of propagation of supergravity modes in the bulk, connecting conformal

boundary to conformal boundary in the AdS background [4]. However, it has not been
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clear what should be the corresponding interpretation of the above 1/2-BPS two-point

correlators for general multi-trace operators.

We will argue that a reasonable holographic interpretation of two-point correlators

naturally emerges if we consider the bubbling geometries in an Euclideanized picture. The

two-dimensional droplets characterizing the bubbling geometries are then infinite domains

which extend to the conformal boundary of the asymptotically EAdS background.1 As

opposed to a circular droplet which is located close to the center of geometries in the

Lorentzian case, the ground-state droplet is an infinite wedge region bounded by a hy-

perbola. This can be related to the fermi sea of the ground state of the c = 1 matrix

model. Since the excited states of the droplet propagate along the hyperbola, we can nat-

urally identify the scattering amplitudes of excitation modes along the hyperbola to be the

correlators on the gauge theory side through the standard interpretation.

On the other hand, from the viewpoint of the c = 1 matrix model, we can argue that

the correlators of 1/2-BPS multi-trace operators which take a form of correlation between

holomorphic and anti-holomorphic matrix operators is reinterpreted as defining an S-matrix

as the amplitudes of transformation between incoming and outgoing multi-particle states

of excitations near the fermi sea.

In the next section, we first describe an Euclideanized version of bubbling geometries.

Then in section 3, we discuss the scattering amplitudes (which we call ‘boundary S-matrix’)

of excited modes along the ground-state droplet in classical approximation. In section 4,

we discuss some examples of matching between boundary S-matrix and the correlators.

We also study the limit of large R-charge momentum. The latter will explain the origin of

a previous partial proposal due to ref. [6] for a possible relation of the 1/2-BPS correlators

with the vertex of collective field theory of the c = 1 matrix model. In section 5, we discuss

the S-matrix interpretation of 1/2-BPS correlators from the standpoint of the c = 1 matrix

model per se. This allows us to provide an intrinsic interpretation of the correlators as

an S-matrix within a logic of matrix model. We also provide a nontrivial example of

higher-genus effect which shows the correspondence of 1/2-BPS correlators with the c = 1

S-matrix to arbitrary genera in the large momentum limit.

2. Euclideanized bubbling geometries

It is useful to first recall how the ground state, AdS5×S5 geometry, is embedded in the

LLM metric [3] in the Lorentzian case,

ds2 = −h−2(dτ + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3. (2.1)

All of the functions in this metric (and also the RR-fields which are suppressed here) are

determined2 by specifying the value, either 1/2 or −1/2, of a scalar function z(xi, y) on

the plane D at y = 0. Under this boundary condition, the Laplace equation for z(xi, y)

∂i∂iz + y∂y

(
∂yz

y

)

= 0 (2.2)

1This possibility was first emphasized in [5].
2The equations are h−2 = 2y cosh G, z = 1

2
tanh G, y∂yVi = εij∂jz, y(∂iVj − ∂jVi) = εij∂yz.
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is solved as

z(x1, x2, y) =
y2

π

∫

D
dx′

1dx′
2

z(x′
1, x

′
2, 0)

[(x − x′)2 + y2]2
. (2.3)

The ground state corresponds to a circular droplet of radius r0 =
√

4πgsN

z(x1, x2, 0) =

{

−1/2 (x1, x2) ∈ circular disk of radius r0

+1/2 otherwise
(2.4)

which gives

z(x1, x2, y) − 1

2
= −y2

π

∫

Disk

r′dr′dφ′

r2 + r′2 − 2rr′ cos φ′ + y2]2

=
r2 − r2

0 + y2

2
√

(r2 + r2
0 + y2)2 − 4r2r2

0

− 1

2
, (2.5)

using spherical coordinates for the 2-dimensional plane (x1, x2) = r(cos φ, sin φ). Then

defining new coordinates ρ, θ and φ̃ by

y = r0 sinh ρ sin θ, r = r0 cosh ρ cos θ, φ̃ = φ − τ, (2.6)

the LLM metric above reduces to the standard AdS5×S5 metric expressed in terms of the

global coordinate,

ds2 = r0

[

− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̃2

3

]

. (2.7)

Let us now perform a (double) Wick rotation [7] τ → −iτ, φ → −iψ (ψ̃ ≡ ψ−τ → −iψ̃)

under which both the AdS metric and the RR-fields are transformed ‘covariantly’ into the

Euclideanized AdS (EAdS5× S4,1) background with the metric,

ds2 = r0

[

cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 − cos2 θdψ̃2 + sin2 θdΩ̃2

3

]

. (2.8)

Since the signature of this metric is still 9+1 in 10-dimensional sense, supersymmetries can

be preserved by a suitable renaming of spinor variables. The two-dimensional coordinates

(x1, x2) are then transformed as

x1 → x1 = r cosh ψ, x2 → ix2 = ir sinhψ. (2.9)

This exercise implies that for discussing generic Euclideanized LLM ansatz, it is sufficient

to make the double Wick rotations x2 → ix2 and τ → −iτ . The vector field Vi must also

be rotated covariantly as V1 → −iV1, V2 → V2.

Therefore the Laplace equation now becomes a hyperbolic wave equation

(∂2
1 − ∂2

2)z + y∂y

(
∂yz

y

)

= 0. (2.10)

Although it is actually sufficient to consider a wedge region x2
1 − x2

2 ≥ 0, x1 ≥ 0 which we

hereafter denote by the symbol W, for discussing the asymptotically EAdS backgrounds, let
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us consider this wave equation in the whole (Wick-rotated) (x1, x2) plane which we denote

by the same symbol D as in the Lorentzian bubbling geometries. The region outside the

W will be denoted by W ≡ D−W. We have to specify the boundary condition at y = 0 for

the whole plane D just as in the Lorentzian case by demanding smoothness of solutions at

y = 0.

The solution must satisfy the boundary condition z(xi, y)|y=0 = z(xi, 0) = 1/2 or

−1/2 at y = 0. Under this boundary condition, the appropriate solution which includes

the above EAdS background as the ground state is

z(x1, x2, y) = −y2

π
Im

[ ∫

D
dx′

1dx′
2

z(x′
1, x

′
2, 0)

[(x1 − x′
1)

2 − (x2 − x′
2)

2 + y2 − iε]2

]

. (2.11)

This is verified by noting that

lim
y→0

[ y2

[(x1 − x′
1)

2 − (x2 − x′
2)

2 + y2 − iε]2
− y2

[(x1 − x′
1)

2 − (x2 − x′
2)

2 + y2 + iε]2

]

= −2πiδ(x1 − x′
1)δ(x2 − x′

2). (2.12)

We here chose the boundary condition outside the wedge region W as

z(x′
1, x

′
2, 0) = 1/2 for (x′

1, x
′
2) ∈ W. (2.13)

After obtaining solutions, we can restrict ourselves to the wedge region (x1, x2) ∈ W for

general nonzero y, which is related to the Euclidean plane D of Lorentzian solutions by

(2.9).

For example, the EAdS solution discussed above is obtained by replacing the circular

disk (with value −1/2) of the Lorentzian case by an infinite domain H (0 < r < r0) in

the wedge region W bounded by a hyperbola at r = r0. It can be checked by explicitly

evaluating the above integral that the expression of z for the EAdS takes the same form

as in the Lorentzian case

−y2

π
Im

[ ∫

D
dx′

1dx′
2

z(x′
1, x

′
2, 0)

[(x1 − x′
1)

2 − (x2 − x′
2)

2 + y2 − iε]2

]

= 1/2 +
y2

π
Im

[ ∫

H
dx′

1dx′
2

1

[(x1 − x′
1)

2 − (x2 − x′
2)

2 + y2 − iε]2

]

=
1

2

r2 − r2
0 + y2

√

(r2 + r2
0 + y2)2 − 4r2r2

0

→
{

1/2 if r > r0 , y = 0

−1/2 if r < r0 , y = 0
(2.14)

as it should be, since the ground state droplet in either metric has no explicit dependence

on the angle φ ↔ iψ.

Thus we can define Euclideanized bubbling geometries by setting hyperbolical droplet

at y = 0 in a similar way as in the Lorentzian case. The excited droplets can have arbitrary

holes and islands of droplets in the wedge region W. The hyperbolical shape of the ground-

state droplet implies that in comparing with the free-fermion picture of matrix models,

we should consider the usual c = 1 model with inverted harmonic oscillator potential,
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Figure 1: The shaded region (H) in the wedge

region W in the plane D represents the ground-

state droplet.

Figure 2: In the fermion picture, the ground

state droplet corresponds to filling levels from

the top of the potential.

instead of the ordinary harmonic potential of the Lorentzian case. There are two regions

(corresponding to positive or negative values of x1) separated by the inverted potential. But

for discussing deformations of the ground-state hyperbola in the classical approximation,

it is sufficient to consider only one of them. Since after all we are discussing the classical

supergravity solutions which are only justified in the large N limit, we are allowed to treat

the fermi sea in the semi-classical approximation on the matrix-model side too.

There is actually a subtle difference that the droplet should be considered only in the

wedge region W. In terms of fermionic picture, this amounts to considering one-particle

levels only up to the top of the inverted harmonic potential. See Figs.1 and 2. The levels

above the potential must be totally ignored, and the ground state is the one in which

the levels are filled from the top of potential, not from the (infinite) bottom of a suitably

regularized potential as usual. In other words, particles and holes are interchanged there,

comparing with case of the usual c = 1 matrix model. Clearly, however, these differences

do not matter again in the semi-classical treatment of droplets.

Now going back to the EAdS geometry obtained by our Wick rotation, the wedge region

W of the droplet plane reaches the conformal boundary corresponding to the limit ψ → ±∞
which implies ρ → ∞. In discussing the boundary-to-boundary propagation of supergravity

modes in the AdS background, it is usually most convenient to use Poincaré coordinates.

Therefore let us try to define the corresponding coordinates for general (Euclidean) LLM

geometries. Since we will be interested in deformations of the ground-state droplet in

the fixed plane W with two SO4 symmetries kept intact, it is sufficient to deal with four

coordinates (τ, x1, x2, y). They can be reparametrized as (τ, ρ, ψ, θ) by defining

x1 = r cosh ψ, x2 = r sinhψ, r = r0 cosh ρ cos θ, y = r0 sinh ρ sin θ (2.15)

which are the same coordinates as we have used for the EAdS background. Then, for
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the two-dimensional part described by (τ, ρ), we can make a coordinate transformation to

(u, v4) defined below, where the direction of v4 is interpreted as the 4-th direction of the

conformal boundary, by assuming that we restrict ourselves to the bubbling geometries

which reduce to EAdS background asymptotically as u → ∞:

cosh ρ cosh τ =
1

2u

(

1 + u2(1 + v2
4)

)

, (2.16)

cosh ρ sinh τ = uv4, (2.17)

sinh ρ =
1

2u

(

1 − u2(1 − v2
4)

)

. (2.18)

In the case of the EAdS, this two-dimensional part reduces to the two-dimensional section

(u, v4) of the Poincaré patch (u, v1, v2, v3, v4), whose metric is nothing but the EAdS2,

u−2du2 + u2dv2
4 . as is easily seen by comparing this definition with the ordinary Poincaré

coordinates of the EAdS5 background.

Eqs. (2.15) show that in terms of the coordinates ρ and θ, the droplet plane D at

y = 0 is described by two patches, either ρ = 0 or θ = 0 as in the case of Lorentzian

convention. Inside the region W, the former corresponds to 0 ≤ x2
1 − x2

2 ≤ r2
0, while the

later to x2
1 − x2

2 ≥ r2
0. The EAdS ground state corresponds to the droplet where the first

patch is completely filled. The droplets of general excited states have holes inside the first

patch, and the second patch has nonzero occupied regions. If we take into account the

Euclidean time coordinate τ , the boundary along which the two patches are sewn is the

product space of hyperbola x2
1 − x2

2 = r2
0 and a semi-circle defined by

1

u2
+ v2

4 = 1 (u = cosh τ, v4 = tanh τ). (2.19)

The latter equation shows that the two-dimensional section in consideration reaches the

conformal boundary u → ∞ at v4 = ±1. If we wish, this can be regarded again as a

hyperbola by defining new variables q = u, p = uv4 in terms of which the above equation

is expressed as q2−p2 = 1. We note that the semicircle coincides with the ‘tunneling trajec-

tory’ [7, 8] which describes two-point functions of the BMN operators semi-classically using

the GKPW relation. The time τ plays the role of affine parameter along the trajectory.

3. Scattering of droplets

3.1 Boundary S-matrix

Consider first a form of droplets which can be represented by the profile of their boundary

in W

x1 = a(ψ) cosh ψ, x2 = a(ψ) sinh ψ, (3.1)

a(ψ) = r0 + ã(ψ). (3.2)

The function ã(ψ) measures the deformation of the boundary profile of the ground-state

droplet. In terms of the coordinate ψ̃ = ψ − τ of the EAdS background, the above droplet

should be reinterpreted as a τ -dependent form

x1 = a(ψ̃) cosh(τ + ψ̃), x2 = a(ψ̃) sinh(τ + ψ̃). (3.3)

– 6 –
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In what follows, we rename ψ̃ by ψ for notational simplicity. The rationale for this inter-

pretation of time dependent droplet is that the equation of small deformations around the

EAdS background must be
d2xi

dτ2
= xi, (3.4)

which is obtained by our Wick rotation from the corresponding equation of AdS back-

ground as established in ref. [9] by studying the quantization of fluctuations around the

AdS geometry. The ground state profile does not change under this motion, while the ex-

cited state profiles moves along the hyperbola, as is familiar in the treatment of collective

motions of fermi liquid in the inverted harmonic oscillator potential in the semi-classical

approximation of the c = 1 matrix model. The equation of supergravity around the EAdS

background is obeyed by solutions obtained from these time dependent droplets at y = 0

through (2.11).

This implies that the scattering amplitude of the excited states of Euclideanized bub-

bling geometries from conformal boundary to conformal boundary in the bulk essentially

coincides with that of the deformed droplets propagating from τ = −∞ to τ = +∞. This

is also consistent with the fact that the energy of the droplet in supergravity is directly

given [3] by the collective Hamiltonian of the droplet, together with the known observation

that the symplectic structure of supergravity action also reduces [9] to that of the collective

fields of the droplet.

Then, according to a general idea of the holographic correspondence, the GKPW

relation, between bulk-boundary propagators and correlators on the boundary, we naturally

expect that the S-matrix of droplets will be directly connected to the two-point functions of

multi-trace 1/2-BPS operators of the (Euclideanized) SYM, under an appropriate mapping

between the deformations of the ground-state profile and the set of those local operators.

There is a well-known method [10] for deriving the S-matrix of droplet in this picture

which has been established in the context of c = 1 matrix model. To make the present paper

reasonably self-contained, we briefly review the basic idea. Renaming xi by x1 → x, x2 → p,

the equation of motion for the profile in the phase space (x, p±(x, τ)) is

∂

∂τ
p± = x − p±

∂

∂x
p± (3.5)

where we interpret the momentum as a function of (x, τ) and the suffix + and − indicate

two regions p+ > 0 and p− < 0, respectively: p± = ±
√

x2 − a2. The S-matrix is by

definition given by considering the relation between two asymptotic regions τ → ±∞.

Following [10], we set for sufficiently large x

x = eq, p± = ±eq ∓ e−qε±(q, τ). (3.6)

Since in these asymptotic regions we have x ∼ a(ψ)
2 e−τ−ψ and ∼ a(ψ)

2 eτ+ψ for τ → ∓∞
respectively, the ε fields behave, with respect to the dependence on τ , as ε±(q, τ) ∼ ε±(τ∓q).

Hence the lapse of time between incoming (τi) and outgoing (τi) waves at a fixed large value

of x = eq satisfies

τf − τi = 2q + log
a(ψ)2

4
, ε−(q, τi) = ε+(q, τf ) =

a(ψ)2

2
(3.7)

– 7 –
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which lead to a functional equation for asymptotic forms

ε+(τ − q) = ε−

(

τ − q − log
ε+(τ − q)

2

)

. (3.8)

Or, using the fluctuating fields δ± defined by ε±(x)
2 = c2

0 + δ±(x), with c0 being the scale of

the static ground-state droplet,

δ+(x) = δ−(x − log(c2
0 + δ+(x)). (3.9)

The solution is given as (see [11] for more details)

δ±(x) = −c2
0

∞∑

p=1

(−1)pΓ(±∂x + p − 1)

p!Γ(±∂x)

(
δ∓(x)

c2
0

)p

. (3.10)

This can be interpreted as the relation between in- and out-fields of collective fields

χ±, defined by

δ± ∼
√

4π(∂τ ∓ ∂q)χ±, χ±(τ ∓ q) = − i√
4π

∫

α±(ξ)eiξ(τ∓q) dξ

ξ
(3.11)

satisfying the canonical commutation relations,

[α±(ξ), α±(ξ′)] = −ξδ(ξ′ + ξ), α±(−ω)|0〉 = 0 ω > 0. (3.12)

In terms of the normal-mode operators in the momentum representation, we have

α±(η) =
∞∑

p=1

( 2

c2
0

)p−1 Γ(1 ∓ iη)

Γ(2 ∓ iη − p)

1

p!

∫

dpξ δ(η −
∑

ξi)
(∏

α∓(ξi)
)

(3.13)

and the S-matrix in the classical (tree) approximation is given by

S(
∑

ωi →
∑

ω′
i) = 〈0|

∏

i

α−(−ω′
i)

∏

j

α+(ωj)|0〉. (3.14)

For example, for n → 1 scattering (n ≥ 2), the S-matrix elements are, up to the delta-

function of energy conservation (ω = ω1 + · · ·ωn) which we will always suppress in what

follows,

〈0|α−(−ω)α+(ω1) · · ·α+(ωn)|0〉 ⇒
(

2

c2
0

)n−1

(−iω)(−iω − 1) · · · (−iω − n + 2)ω1 · · ·ωn.

(3.15)

In applying these results to our case, we have to Wick-rotate the momentum (=±energy

on the mass-shell) as ξ = ω → iJ with J being the R-charge, in order to take into account

our prescription of Euclideanized bubbling geometries. Note that this procedure effectively

makes the coupling constant, 1/c2
0, pure imaginary, apart from an overall factor i which

can be absorbed into Wick rotation of the δ-function of energy conservation.
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3.2 Hamiltonian formalism

We finally recall that the same S-matrix elements as above are obtained by the Hamiltonian

formalism of collective field theory [12]. The equation (3.5) can be recast in the Hamiltonian

form

∂τp± = i[H, p±] (3.16)

by defining the effective Hamiltonian and the commutation relations as

H =

∫

dx

[(
p3
+

6
− (x2 + µ)p+

2

)

−
(

p3
−

6
− (x2 + µ)p−

2

)]

, (3.17)

[p±(x, τ), p±(x′, τ)] = ∓iδ′(x − x′). (3.18)

Here, µ is an arbitrary constant, corresponding to an integration constant for the equation

of motion. Note also that we use the usual Lorentzian convention in writing down the

equations of motion, by interpreting (3.4) as being due to the inverted harmonic potential

V (x) = −x2/2. Actually, there is an ambiguity whether we take positive µ or negative one.

Here we choose the positive convention for definiteness. This choice has an advantage in

that the interaction Hamiltonian is not singular. The negative µ, which looks more natural

in view of the form of the profile function, would give a singular interaction Hamiltonian.

Remarkably, however, there exists a duality that both give the same S-matrix with suitable

regularization for the negative choice.

To make the system look more like a usual canonical system, we define the shifted

fields φ̃± (the sign of µ becomes relevant here):

p±(x, τ) = ±(
√

x2 + µ + φ̃±(x, τ)), (3.19)

H =

∫

dx

[
1

2

√

x2 + µ(φ̃2
+ + φ̃2

−) +
1

6
(φ̃3

+ + φ̃3
−)

]

, (3.20)

which reduces, by further making a change of variables x = µ sinhσ, φ̃± =

∣
∣
∣
∣
dσ
dx

∣
∣
∣
∣
φ±, to

H =

∫ ∞

0
dσ

[
1

2
(φ2

+ + φ2
−) +

1

6

∣
∣
∣
∣

dσ

dx

∣
∣
∣
∣

2

(φ3
+ + φ3

−)

]

. (3.21)

Here we have subtracted a (field-independent) c-number contribution. Then, using the

normal-mode expansion in the interaction representation,

φ±(σ, τ) =
1√
2π

∫ ∞

−∞
dξe−iξ(τ∓σ)α(ξ) (3.22)

with [α(ξ), α(ξ′)] = −ωδ(ξ + ξ′) which can be identified with the normal-mode operators

of χ± introduced above in the asymptotic region |σ| ∼ q → ∞, we obtain

H = H2 + H3(τ), (3.23)

H2 =

∫ ∞

0
dξ α(ξ)α(−ξ), (3.24)

H3(τ) =
1

6

∫ ∞

−∞
d3ξ f(ξ1 + ξ2 + ξ3) e−i(ξ1+ξ2+ξ3)τα(ξ1)α(ξ2)α(ξ3) (3.25)
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with

f(ξ) =

∫ ∞

−∞
dσ

1

µ cosh2 σ
eiξσ =

2πξ

µ sinhπξ
. (3.26)

Note that the range of the σ-integral becomes the whole real axis by combining φ± con-

tributions into a single integral, even though the original range was the half real axis

0 < σ < ∞. If we choose negative µ, the form factor in H3 would have been 1/ sinh2 σ

instead of 1/ cosh2 σ. Using this interaction Hamiltonian, it is straightforward to compute

the S-matrix in perturbative expansion in 1/µ ∝ 2/c2
0. The agreement of the results with

the polynomial form exhibited in (3.13) and (3.15) has been confirmed in [13][14][15], to-

gether with some extensions to quantum corrections. This is somewhat miraculous in view

of the presence of a nontrivial form factor f(ξ) in the interaction Hamiltonian (3.25).

4. Comparison with the two-point functions of multi-trace operators

Let us recall the structure of a representative set of the chiral primary 1/2-BPS operators on

the Yang-Mills side, which are characterized SO(4) symmetry and the conformal dimensions

∆ = J ,

OJ
(J1,J2,...,Jn)(x) ≡ Tr

(

Z(x)J1

)

Tr
(

Z(x)J2

)

· · ·Tr
(

Z(x)Jn

)

, J =
∑

i

Ji (4.1)

where Z = (φ5 + iφ6)/
√

2 is the complex scalar field with a unit R-charge J = 1 with

respect to the rotation in the 5-6 plane. Due to the non-renormalization property, two-point

correlation functions of these operators with their conjugate set of operators constructed

in terms of Z = (φ5 − iφ6)/
√

2 are given by the free-field results,

〈OJ
(J ′

1
,J ′

2
,...,J ′

m)(x
′)OJ

(J1,J2,...,Jn)(x)〉 = F ({(J ′), (J)}, N)D4(x, x′)J (4.2)

where D4(x, x′) ∝ |x−x′|−2J with J =
∑

i Ji =
∑

i J
′
i is the massless free-field propagator in

4 dimensions and the function F ({(J ′), (J)}, N) is determined by the free-field contraction

among the indices of scalar fields φi between OJ(x) and O
J
(x′). Obviously, the function F

is completely independent of spacetime coordinates. Furthermore, it is independent of the

spacetime dimensions and signature. The double Wick-rotation we have discussed in the

previous section requires us to Wick-rotate the angle coordinate in the 5-6 plane. In terms

of the above scalar fields, it amounts to rotating φ6 to pure imaginary axis, iφ6, and hence

replace Z (Z) by Z = (φ5 − φ6)/
√

2 (Z = (φ5 + φ6)/
√

2) with φ6 now being quantized

with negative metric. The crucial property 〈Z Z〉 = 〈Z Z〉 = 0 is preserved under this

procedure, and hence this rotation does not affect the above final form of the correlators.

For the specific purpose of the present section, comparison of the S-matrix elements

with the correlators, it is sufficient to study only the function F ({(J ′), (J)}, N) which is

independent of possible choices of matrix models. Let us therefore suppress the spacetime

coordinates and, hence, spacetime dependent factor such as D4(x, x′) in what follows. The

simplest case m = n = 1, we have

〈TrZ
J
TrZJ〉 = JNJ . (4.3)
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Figure 3: Four types of planar contractions of multiple traces into a single trace for 1 ↔ 4

scattering.

The results of the previous section suggests that this trivial two-point function should be

interpreted as the trivial (1 → 1) S-matrix element

〈0|α−(−iJ)α+(iJ)|0〉 = J. (4.4)

As before we have suppressed an overall δ-function factor −iδ(J − J) = −iδ(0) of mo-

mentum conservation, which is common for all S-matrix elements. Then, the natural

normalization for making correspondence between the S-matrix elements of the droplet

and the correlators is α(iJ) ↔ 1
NJ/2 TrZJ for incoming states and α(−iJ) ↔ 1

NJ/2 TrZ
J

for

outgoing states.

Once single-trace operators are related to single-particle states, the multi-trace oper-

ators must be interpreted as multi-particle states. Under this interpretation, let us study

some examples of (n → 1) correlators in the leading planar approximation in the large N

limit. We present the results of graphical computations for n = 2, 3, 4 (J =
∑n

i=1 Ji).

F (J, {J1, J2},N)planar = JJ1J2N
−1, (4.5)

F (J, {J1, J2, J3},N)planar =J
(

J1J2J3(J1−1)+J1J2J3(J2−1)+J1J2J3(J3−1)+2J1J2J3

)

N−2

= J1J2J3J(J − 1)N−2

where for n = 3 the first 3 contributions come from ‘chain’-type diagrams in which the 3

traces of the initial state connected like a chain of 3 beads, while the last one comes from a

‘clover’-type diagram in which all of the 3 traces are connected simultaneously at a single

point.

F (J, {J1, J2, J3, J4},N)planar =J
[

2
(

J1J2(J2 − 1)J3(J3 − 1)J4

+J1J3(J3 − 1)J4(J4 − 1)J2+J1J2(J2−1)J4(J4−1)J3

+J2J1(J1−1)J4(J4−1)J3+J3J1(J1−1)J2(J2−1)J4

+J2J1(J1−1)J3(J3−1)J4

)

+6
(

J1J2J3(J3−1)J4+J2J3J1(J1−1)J4+J1J2(J2−1)J3J4

+J1J2J3J4(J4−1)
)

+
(

J1(J1−1)(J1−2)J2J3J4+J1J2(J2−1)(J2 − 2)J3J4

+J1J2J3(J3−1)(J3−2)J4+J1J2J3J4(J4−1)(J4−2)
)

+6J1J2J3J4

]

N−3 = J1J2J3J4J(J−1)(J−2)N−3 (4.6)
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where, similarly with the case n = 3, the first round bracket comes from chain diagrams of

4 beads, the second from three-leaf clover with one of the leafs being a chain of two beads,

the third from ‘sunflower’-type diagrams in which three traces are connected to one central

trace at three separate points, and the last from 4-leaf clover diagrams in which all of 4

traces are connected at one point, respectively. See Fig. 3 for illustration. These results

precisely match to the corresponding S-matrix elements (3.15), provided the expansion

parameter is related by i2/c2
0 → 1/N .

The same results as above can also be obtained using the exact general formulas [17],

which are expressed as linear combinations of the ratios of Gamma functions, such as (say

n = 1, 2)

〈Tr(Z
J
)Tr(ZJ)〉 =

1

J + 1

(
Γ(N + J + 1)

Γ(N)
− Γ(N + 1)

Γ(N − J)

)

, (4.7)

〈Tr(Z
J
)Tr(ZJ1)Tr(ZJ2)〉 =

1

J + 1

(
Γ(N + J1 + J2 + 1)

Γ(N)
+

Γ(N + 1)

Γ(N − J1 − J2)

−Γ(N + J1 + 1)

Γ(N − J2)
− Γ(N + J2 + 1)

Γ(N − J1)

)

, etc (4.8)

for these type of correlators. See the Appendix. These exact formulas will also be used for

a study of the higher-genus effect in the next section.

The computation of higher-point cases and more general configurations of initial and

final states becomes increasingly cumbersome. To convince ourselves the validity of agree-

ment further, it is useful to consider the limit of large momentum J . Let us define a unitary

scattering operator S = expV by

Sα+(η)S−1 =
∑

n=0

1

n!

n times
︷ ︸︸ ︷

[V, [V, [· · · , [V , α+(η)

n times
︷ ︸︸ ︷

] · · · ]]] = α−(η). (4.9)

It should be kept in mind that here the commutators should be understood as Poisson

brackets, since we are in the tree approximation where the operator ordering is irrelevant.

In the limit of large momentum, we can replace the (3.13) by (κ = 2/c2
0)

α±(η) =
∞∑

p=1

κp−1 (∓iη)p−1

p!

∫

dpξδ(η −
∑

ξi)
( ∏

α∓(ξi)
)

. (4.10)

Then, we find that the scattering operator can be written in a simple closed form as

S = exp

[

i
κ

6

∫

dξ1

∫

dξ2

∫

dξ3 δ(ξ1 + ξ2 + ξ3)α+(ξ1)α+(ξ2)α+(ξ3)

]

(4.11)

For example, the second term n = 1 (p = n + 1) is

[i
κ

6

∫

dξ1

∫

dξ2 α+(ξ1)α+(ξ2)α+(−ξ1 − ξ2), α+(η)] =
iηκ

2

∫

dξ1 α+(ξ1)α+(η − ξ1) ≡ O1
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The third term (n=2) is equal to

1

2

[

i
κ

6

∫

dξ1

∫

dξ2 α+(ξ1)α+(ξ2)α+(−ξ1 − ξ2),
iηκ

2

∫

dξ1 α+(ξ1)α+(η − ξ1)

]

=
iκ2η

2

∫

dξ1

∫

dξ2 (iξ1)α+(ξ1)α+(ξ2)α+(η − ξ1 − ξ2)

=
iηκ2

2

∫

dξ1

∫

dξ2

∫

dξ3 δ(ξ1 + ξ2 + ξ3 − η)
1

3
i(ξ1 + ξ2 + ξ3)α+(ξ1)α+(ξ2)α+(ξ3)

=
(iη)2κ2

6

∫

dξ1

∫

dξ2

∫

dξ3δ(ξ1 + ξ2 + ξ3 − η)α+(ξ1)α+(ξ2)α+(ξ3) ≡ O2

(4.12)

To establish the general terms in the claimed form, we can proceed by mathematical

induction. Suppose the n-th term in the expansion is given by

On ≡ (iη)nκn

(n + 1)!

∫

· · ·
∫

dξ1 · · · dξn+1 δ(ξ1 + · · · + ξn+1 − η)α+(ξ1) · · ·α+(ξn+1).

Then by similar manipulation as for n = 2, we can check that the next term n+1 is indeed

given by

i

(n + 1)

[

i
κ

6

∫

dξ1

∫

dξ2 α+(ξ1)α+(ξ2)α+(−ξ1 − ξ2), On

]

= On+1.

When we use the Euclidean convention from the beginning, we obtain the same result

by making a replacement V → V3.

V3 =
1

2N

∑

(α(J1 + J2)α(−J1)α(−J2) + α(J1)α(J2)α(−J1 − J2)) (4.13)

by restricting the value of (purely imaginary) momentum by discrete integers Ji’s. The

vertex is essentially the time-integrated interaction Hamiltonian (3.25), restricted on the

mass-shell, of collective field theory

V3 ∼
∫

dτ

2π
H3(τ).

In fact, it is not surprising that in the limit of large momentum, the intermediate states

behave almost like on-mass-shell states.

Interestingly, precisely the same formula (4.13) has previously been proposed in [6]

which seems to be motivated purely on a combinatorial basis that this overlap-type 3-point

vertex is simulating the structure of splitting and joining of matrix traces.3 The suggestion

made in the last reference was that this formula should be valid for arbitrary genus in

the BMN limit (J,N → ∞, g2 = J2/N =fixed). Our results can thus be regarded as a

generalization of this proposal for arbitrary finite J at least in the planar approximation,

by making clear the basis for the correspondence between the c = 1 matrix model and the

bubbling geometry. In particular our S-matrix interpretation implies that for finite J the

above vertex would not be appropriate for evaluation of higher then 3-point correlators.

For that one should uses the nontrivial c=1 string vertex as in [13].

3One of the present author (T.Y.) thanks K. Okuyama for a discussion on his work.
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5. Droplet scattering from the viewpoint of the c = 1 matrix model

5.1 c = 1 scattering interpretation of the correlators

Since the function f does not depend on spacetime dimensions, we can consider a matrix

quantum mechanics to represent the same correlators. Traditionary, we use a complex

matrix for this purpose with special constraint called the ‘lowest Landau-level condition’,

as originally discussed in [1] and followed by most literature related to this subject.

From the reduction, it is clear that one can start with the ordinary Hermitian matrix

model (of Lorentzian signature),
∫

dτ 1
2Tr

[(

dM
dτ

)2

− M2

]

, by considering the correlators

in the following normal-order prescription,

〈:OJ
(J ′

1
,...,J ′

m)(τ
′)M : :OJ

(J1,...,Jn)(τ)M :〉 = F ({(J ′), (J)}, N)D1(τ, τ
′)J (5.1)

where D1(τ, τ
′) ∝ exp(i|τ − τ ′|) and

OJ
(J1,...,Jn)(τ1)M ≡ Tr

(

MJ1

)

Tr
(

MJ2

)

· · ·Tr
(

MJn

)

. (5.2)

The normal product symbol : · · · : indicates that no contraction is allowed inside. This

interpretation was emphasized in ref. [5] to be useful for extending discussions to more

general 1/2-BPS operators in which the other SO(6) states than (4.1) appear on an equal

footing.

In our case, it is more natural to consider the model with inverted harmonic poten-

tial of negative sign, in order to utilize the standard c = 1 matrix model to which the

Euclideanized bubbling geometries fit well,

Sc=1 =

∫

dτ
1

2
Tr

[(
dM

dτ

)2

+ M2

]

(5.3)

and consider the operators

Π± = (M ± Ṁ)/
√

2. (5.4)

The correlators are then given as

〈OJ
(+;J ′

1
,...,J ′

m)(τ
′)OJ

(−;J1,...,Jn)(τ)〉 = F ({(J ′), (J)}, N)D1(τ, τ
′)J (5.5)

with

OJ
(±;J1,...,Jn)(τ1) ≡ Tr

(

ΠJ1

±

)

Tr
(

ΠJ2

±

)

· · ·Tr
(

ΠJn
±

)

. (5.6)

Note that we now have D1(τ, τ
′) ∝ exp(−|τ − τ ′|). The normal-order prescription is

automatically taken into account since 〈Π+Π+〉 = 〈Π−Π−〉 = 0. In the language of the

complex matrix model of ref. [1], the matrix operators Π± are related to the following

canonical decomposition

Z =
1√
2
(A† + B), Z̄ =

1√
2
(A + B†)

with A,A† being replaced by Π±. The lowest Landau level condition amounts to eliminating

the additional canonical pair (B,B†).
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For evaluating the correlators, we can use the collective-field representation. Remember

that in the planar approximation of matrix models, the collective field theory is essentially

a phase-space representation of free-fermion liquid. For our purpose, it is most convenient

to use the coherent-state representation of the phase space in which Π−(Π+) ∼ A†(A) are

regarded as generalized coordinate (z) and momentum (α), respectively.

Tr
(
ΠJ

−

)
→

∫
dz

2π

∫ α

dα zJ =

∫
dz

2π
zJα(z) = α−J ,

Tr
(
ΠJ

+

)
→

∫
dz

2π

∫ α

dα αJ =

∫
dz

2π

α(z)J+1

J + 1
. (5.7)

It is relevant to note that there is also a (dual) coherent state representation in which

TrΠJ
− = βJ =

∫
dz

2π
z−Jβ(z),

Tr
(
ΠJ

+

)
=

∫
dz

2π

β(z)J+1

J + 1
. (5.8)

In the (analytically continued) scattering picture, the operators αJ or βJ will be seen to

coincide with in (out) fields respectively. The existence of the dual representation can be

related to the freedom of two seemingly different choices for the sign of µ, appearing in the

construction of the collective Hamiltonian as has already been alluded to in section 3.

The correlator then becomes

〈0|
∫

dz1

2π

α(z1)
J ′
1+1

J ′
1 + 1

· · ·
∫

dzmα(zm)J
′
m+1

J ′
m + 1

α−J1
α−J2

· · ·α−Jn |0〉.

In this picture, the operators Tr
(
ΠJ

−

)
are simply creation operators while the operators

Tr
(

ΠJ ′

+

)

are nontrivial polynomials. It is a theorem that we shall prove below that they

are generated by the analog of the (c = 1) S-matrix operator. We have

Tr
(
ΠJ

+

)
= S−1αJS.

Consequently, the above matrix elements are

〈 〉 = 〈0|αJ ′
1
· · ·αJ ′

m
Sα−J1

α−J2
· · ·α−Jn |0〉

To demonstrate that S is nothing but the S-matrix of the c = 1 theory, we recall the

analysis through collective field theory [12]. One considers

TrΠl
+ → Tr ((P + X) /

√
2)ik = W

(+)
ik , (5.9)

which is represented as

W
(+)
ik =

∫
dx

2π

(

αik+1
+

ik + 1
− αik+1

−

ik + 1

)

. (5.10)

This operator has an exact time evolution, being an eigenstate of the Hamiltonian H =

Tr(P 2−X2)/2 = Tr(Π−Π++Π+Π−)/2. A multiplication by e−ikt makes it into a constant
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of motion. Evaluating this operator at early (t → −∞) and late (t → +∞) times gives

the S-matrix of the theory. One has

α±(x) = ±x ∓ 1

x
(µ ∓ α̂±(τ))

with x ∼
√

µ/2eτ . At early time, we will have only a left moving wave packet given by

α̂−(t + τ) and at late time we have a right moving packet defined by α̂+(t − τ). The

evaluation of Wik was performed in detail in [16]. At early time, with the left-moving

packet,

Wik → −
(√

2µ
)ik+1

ik + 1

∫
dτ

8π
e−ikτ

∞∑

p=1

(ik + 1)!

(ik + 1 − p)!p!

(
α−

µ

)p

.

At late time (with a right moving packet) only a single mode survives in the limit giving

Wik →
(√

2µ
)ik+1

∫
dτ

8π
eikτ α+(τ)

µ
.

Consequently, one obtains a relationship between the outgoing modes and the incoming

ones
∫

dτeikτ α̂+(τ) = −
∫

dτ

ik + 1
e−ikτ

(

1 +
α̂−

µ

)1+ik

(5.11)

which is equivalent with (3.13) obtained on the basis of a droplet picture on the bulk side.

The c = 1 S-matrix is defined by the transformation α̂+ = S−1α̂−S The identification

α̂−(z) ↔ α(z), α̂+(z) ↔ β(z)

then establishes the statement that the 1/2-BPS correlators coincide with the scattering

amplitudes of the c=1 theory.

We emphasize that this holds without the so-called leg factors which appear in the

physical interpretation of the c=1 matrix model . Also the analysis given above was done

in the tree (or planar) approximation.

We note that this correspondence is related to the observation of [18] where an iden-

tification between finite temperature c=1 amplitudes and the normal matrix integral was

described. In contrast to the AdS/CFT interpretation that we were concerned with in the

present work, the correspondence discussed in [18] (see also [19]) gives a special integration

measure on the complex matrix model side such that equivalence is achieved with finite

temperature correlation functions.

5.2 Case of higher-genus

Thus far we have given a basis for the correspondence between the 1/2-BPS correlators

and the c = 1 S-matrix from both sides of bulk and boundary theories at the planar

approximation. It is then of interest to see to what extent the correspondence will be valid

beyond this approximation. On the bulk side, evaluating string-loop effects in the (E)AdS

background is an unsolved problem. On the side of the gauge theory and the matrix models,

the usual fermion representation based on the positive harmonic potential gives a rigorous
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definition of the correlators for arbitrary finite N and integer J . In principle, there must

be a version of c = 1 fermion representation with negative harmonic potential, which gives

the identical function F for finite N and J . It would require a special regularization in

dealing with the negative-sign harmonic potential by appropriately taking into account the

differences discussed in section 2. We will not elaborate on such a direction in the present

note, since the problem is rather a matter of interpretation.

Instead, we expect on the ground of universality that the S-matrix of the c = 1 model

defined by the usual double scaling limit gives the right answer for large N and J . In

the tree approximation, the large J limit was not necessary, as is reasonable since the mo-

mentum along the R-charge direction must be conserved and internal momenta in the tree

approximation are fixed by external momenta. It is natural to expect that the discreteness

of J would be washed out in the limit of large J even for internal momenta.

In the rest of this section, we present a piece of evidence for this expectation by studying

the simplest nontrivial case, 1 → 1 amplitude, of higher-genus effect in the leading large-J

approximation. In the coherent state representation, one has the Hamiltonian for a single

fermion

h =

(

â+â− +
1

2

)

− µ. (5.12)

The wave-function can be taken as functions of a− or (the dual picture) of a+ . One has

the simple transform from one basis to another

ψ−(a+) =
1√
2π

∫

da−e−a+a−ψ+(a−). (5.13)

The wave-functions both obey

1

2
(â+â− + â−â+) ψ± = (i∂τ + µ)ψ±. (5.14)

In the coherent state representation with â− = a â+ = ∂/∂a , one has the equation

(

a
∂

∂a
+

1

2
− µ

)

ψ+,k(a) = kψ+,k(a). (5.15)

From the viewpoint of the fermion phase-space (x, p) , creation-annihilation coordinates

are the null plane coordinates a± → x± ≡ (p± x)/
√

2. The discussion of scattering theory

in the fermionic picture can be found in [20, 21].

The fermionic wave-functions ψ±(x+) obey the analogous Schrödinger eqs. The equa-

tion is solved by

ψ+,k(x−) = Akx
−i(k−µ)
− Θ(x−) + Bk(−x−)−i(k−µ)Θ(−x−) (5.16)

with an analogous solution for ψ−. The (Gaussian) transform then leads to the relation

between the in and out fermion wave-function with the following reflection coefficient (see

[22])

R(k − µ) =
Γ

(
1
2 − i(k − µ)

)

√
2π

[

ei π
2
( 1

2
−(k−µ)) + γ e−i π

2
(k−µ)

]

(5.17)
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where γ specifies the boundary conditions.

In conformal field notation, the fermions have the expansion

ψ(z) =
∑

z−nψn, (5.18)

ψ+(z) =
∑

z−nψ+
n (5.19)

with nεZ + 1
2 , and

{
ψn, ψ+

m

}
= δn+m,0. (5.20)

The reflection coefficient is defined by

ψout
−n = (Rψ)in−n (5.21)

where ψin(z) ≡ ψ−(z), ψout(z) ≡ ψ+(z). Standard Bosonization formulas then define the

corresponding in (0ut) bosonic fields. To make contact with the previous notation we have

ψ†
±(z)ψ±(z) = α±(z) (5.22)

The Ŝ-matrix is then given by

〈0|
m∏

k=1

∑

n

(

R∗ψ†
)

n
(Rψ)lk+n α−j1α−j2 · · ·α−jn |0〉. (5.23)

To compare this result with the 1/2-BPS correlators, let us use the known results of

genus expansion of two-point amplitude given in [20]. Using their notation, the contribu-

tions up to 3 loops in the limit of large momentum q are given as

R(q,−q)1 ≈ − 1

24
q5, R(q,−q)2 ≈ 3

5760
q9, R(q,−q)3 ≈ − 9

2903040
q13 (5.24)

where we have omitted a factor (Γ(−|q|))2 µ|q| multiplying each term for brevity.

On the other hand, the exact 2-point correlator reads (see (4.7))

G(J) =
1

J + 1

[
Γ(N + J + 1)

Γ(N)
− Γ(N + 1)

Γ(N − J)

]

.

Using the expansion formula for the ratio of Gamma functions as discussed in the Appendix,

we find

G(J) ≈ NJ+1

J + 1

∞∑

n=0

1

Nn

(
β

n

)[(
J

2

)n

−
(

−J

2

)n]

.

Only the odd n = 2k + 1 terms are nonzero, giving the expansion

N−JG(J) ≈
∞∑

k=0

2

JN2k

(
J

2k + 1

) (
J

2

)2k+1

≈ 2N

J
sinh

J2

N
,

or

N−JG(J) ≈ J

[

1 +
1

N2

J4

3!22
+

1

N4

J8

5!24
+

1

N6

J12

7!26
+ · · ·

]

. (5.25)
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The odd denominators give coefficients 24, 1920, 322560 agreeing with the three coefficients

in the c = 1 theory, up to an overall factor i which should be combined to the δ-function

of energy conservation as in the planar cases and also to sign factor (−1)n for n loops.

We can confirm that this agreement is valid to all orders. For this purpose, it is useful

to recall the exact expression given in [20] for the matrix model two-point function.

∂

∂µ
R(q,−q) = Γ(−|q|)2 Im

{

eiπ|q|/2

(

Γ
(
|q| + 1

2 − iµ
)

Γ
(

1
2 − iµ

) − Γ
(

1
2 − iµ

)

Γ
(
−|q| + 1

2 − iµ
)

)}

(5.26)

which gives the expansion

R(q,−q) = (qΓ(−|q|))2 µ|q|

{
1

|q| − µ−2 · 1

24
· (|q| − 1)(q2 − |q| − 1) + · · ·

}

(5.27)

In the large q limit, one notices the identity

∂

∂µ
R(q,−q) = µ−1|q|R(q,−q)

which follows from the fact that the factor µ|q| gives the dominant effect, remembering

that we keep only the leading large q term in each order of 1/µ2 expansion. Consequently

at large q (only) we can use the formula

R(q,−q) ≈ 1

|q|µ
∂

∂µ
R(q,−q), (5.28)

and we have

Γ(−|q|)−2R(q,−q) ≈ 1

2|q|i

{

ei π
2
|q|

(

Γ(q + 1
2 − iµ)

Γ(1
2 − iµ)

− Γ(1
2 − iµ)

Γ(−q + 1
2 − iµ)

)

−e−i π
2
|q|

(

Γ(q + 1
2 + iµ)

Γ(1
2 + iµ)

− Γ(1
2 + iµ)

Γ(−q + 1
2 + iµ)

)}

.

Using the same expansion formula for the two terms inside the round bracket as before,

one generates at large q the terms

±(µ)q

q

∞∑

n=0

(∓iµ)−n
( q

n

) [(q

2

)n
−

(

−q

2

)n]

.

Since in the sum only the odd (n = 2k + 1) terms contribute these two contributions

add up giving an agreement with the gauge-theory correlator G(J), under the replacement

−µ2 → N2 with an overall factor ±i. The sign is consistent with the correspondence of

genus-expansion parameters we found at the planar level.

The fact that |µ| ∼ N implies that the fermion levels must be filled evenly from the

top of the potential for the ground state, quite differently from the usual double scaling

limit in defining higher genus contributions in the traditional treatment of the c = 1 matrix

model. This of course reflect the feature emphasized in the beginning of this subsection.
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6. Conclusion

We have argued that the two-point correlators of 1/2-BPS multi-trace operators are in-

terpreted as the S-matrix of the c = 1 Hermitian matrix model. The correspondence of

both sides are fairly tight in the planar approximation. However, as we have cautioned, the

situation is somewhat different if we consider the non-planar case, where we have presented

evidence for the correspondence only in the limit of large momentum J → ∞. To establish

exact correspondence for finite J and large but finite N , we need a modified definition of

the c = 1 model, in regard to the level spacings in filling fermion states from the top of the

potential, not from the bottom, as we have alluded to in section 2. It must be defined such

that the ‘ground state’ of the model becomes equivalent with that of the matrix model

with positive harmonic potential and consequently we can have a one-to-one mapping even

for excited states (again from top to down) to those of the positive harmonic potential.

We may also hope that, in the large J limit, we can discuss the genus corrections from

the viewpoint of pp-wave string field theory. However, at the present state of development,

even the question of what is the right string-field vertex for this purpose is not settled. For

some recent works related to this question, see [23].

We have emphasized that unlike the known correspondence between c = 1 matrix

model and the S-matrix of 2D string theory, the leg factor is not necessary. In ref. [8],

it has been established that we need a special leg-like factor in order to relate the 3-

point correlator of the BMN operator with the Euclidean S-matrix in the AdS bulk from

boundary to boundary. However, for the extremal correlators such as

〈Tr(Z̄J1+J2)(x)Tr(ZJ1)(y)Tr(ZJ2)(y′)〉,

the corresponding 3-point (on-shell) vertices in the bulk vanish and simultaneously the

leg factor diverges, so that the product of 3-point vertices and the leg factor gives finite

correlators. In the limit y → y′, these extremal 3-point correlators reduce smoothly to

two-point correlators which are dealt with in the present work. Similar arguments apply

also to higher-point extremal correlators. It is quite significant that the droplet picture

provides us a direct correspondence for the correlators and Euclidean S-matrix in the bulk

without such complications. It would be very interesting if there is any extension of our

results to non-BPS operators.

Indeed, the c=1 interpretation might be of relevance to the full AdS string where

analogous structures and c = 1 type scaling [24, 25] has been observed recently. The latter

correspondence regarding the world-sheet S-matrix points towards capturing the mixing

among excited but single-body string states. In contrast to this, in our case, the c = 1

matrix model is relevant in understanding the multi-body states of strings, restricted to the

ground state of spin chain states.

We noted parallels with the relation between the so-called normal (complex) matrix

model and the c = 1 model at finite temperature [18]. It would be of interest to clarify the

connection further.

Finally, we mention also the recent investigation of [26] which discusses correlators and

topology changes in the 1/2 BPS sector.
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A. Genus expansion from exact formulas

Here we present some formulas which are useful for studying genus expansion on the basis

of exact formulas for correlators. First we need an expansion formula [27] for the ratio of

Gamma functions:

Γ(z + α)

Γ(z + β)
=

∞∑

n=0

Γ(α − β + 1)

n!Γ(α − β − n + 1)
B(α−β+1)

n (α)zα−β−n, (1.1)

where the coefficient function B
(µ)
n (x) is the generalized Bernoulli polynomial [28] expressed

as

B(µ)
n (x) =

n∑

k=0

k!

(2k)!

(n

k

)(
µ + k − 1

k

) k∑

j=0

(−1)j
(

k

j

)

j2k(x + j)n−k

×F [k − n, k − µ; 2k + 1;
j

x + j
]. (1.2)

In our case, the explicit expressions of the coefficients are

B
(α−β+1))
0 (α) = 1,

B
(α−β+1)
1 (α) =

1

2
(α + β − 1), (1.3)

B
(α−β+1)
2 (α) =

1

4
(α + β)2 − 7

12
α − 5

12
β +

1

6
, (1.4)

B
(α−β+1)
3 (α) =

1

8
(α + β)3 − 1

2

(

α +
β

2

)

(α + β) +
3

8
α +

1

8
β. (1.5)

In particular for α − β À 1, we have an asymptotic form

Γ(z + α)

Γ(z + β)
∼

∞∑

n=0

(
α − β

n

)
(α + β)n

2n
zα−β−n, (1.6)

which can easily be understood by a ‘dilute-gas’ approximation for the power-series expan-

sion of the above ratio in 1/z. Note that in this limit (α + β)/2 is the average value of the

coefficients of 1/z in the product
∏α−1

n=β(1 + n
z ). This asymptotic formula is used in section

5.
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Using the exact formulas [17] such as (4.7), (4.8) and, for n = 3,

〈Tr(Z̄J)Tr(ZJ1)Tr(ZJ2)Tr(ZJ3)〉=
1

J + 1

(
Γ(N+J1+J2+J3 + 1)

Γ(N)
− Γ(N+J2+J3+1)

Γ(N − J1)

−Γ(N + J1 + J3 + 1)

Γ(N − J2)
− Γ(N + J1 + J2 + 1)

Γ(N − J3)
+

Γ(N + J1 + 1)

Γ(N − J2 − J3)
(1.7)

+
Γ(N + J2 + 1)

Γ(N − J1 − J3)
+

Γ(N + J3 + 1)

Γ(N − J1 − J2)
− Γ(N + 1)

Γ(N − J1 − J2 − J3)

)

etc,

together with the above expansion formula (1.1), we can check the results of section 4,

although the algebra becomes increasingly tedious for larger n.
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